Hedge Funds go for a Haircut

Izzy Nelken
Super Computer Consulting, Inc.
3943 Bordeaux Drive
Northbrook, IL 60062
(847) 562-0600
www.supercc.com
www.optionsprofessor.com
Izzy@supercc.com

Joint work with Hari Krishnan,
Vice President, Investment Management, Morgan Stanley
Published in Risk Magazine, April 2003
“Haircut”
The asset allocation problem

- Create portfolios consisting of several assets
- That will have low volatility
- …and high returns
- (e.g. Stocks and Bonds)

- Takes the correlation between assets into account
Mean Variance Optimization

Pioneered by Harry Markowitz (1950s)

Inputs:
- The (historical) returns of each asset
- The (historical) volatility numbers for each asset
- Matrix of correlations between assets

Output:
- The efficient frontier – for any given volatility it gives the portfolio with the largest return
Hedge Funds grow in importance

- There are now over 6000 hedge funds in existence
- The TASS database has more than 2600 funds with at least $10 million under management
- Hedge funds collectively have $618.6 Billion under management (Reuters May 9, 2003)
Incorporating hedge funds into a portfolio

How much of the investor’s capital should be in a hedge funds (or in a portfolio of HF)?

Many funds have:
- High historical returns
- Low historical volatilities
- Superior performance than stocks or bonds on a risk adjusted basis

A “naïve application” of the mean variance approach
- Would place the majority of the assets into the hedge fund class
- Does not capture some of the risks specific to hedge funds

Super Computer Consulting, Inc.
Ad-hoc solution

- Constrain the allocation to hedge funds to a “reasonable” level, say 20%
- This level is partly based on market consensus (what others are doing) without any theoretical foundation
Risks in HF

- Historical volatility measures underestimate the volatility of a fund that trades illiquid assets or takes nonlinear risks.

- Some funds tend to generate consistently positive returns while taking a small risk of a large loss (Fung & Hsieh, 1997).

- Hedge fund indices can be misleading for a number of reasons: survivorship bias, return dispersion within a given category, variable leverage, etc.
Liquidity Risk

- HF typically have an initial lockup period
- A one year lockup is common; this means that an investor cannot withdraw money until December 31 of the calendar year after initial investment
- In this case, the lockup period is between 1 and 2 years
- During that time, the manager can change strategy, modify leverage or suffer a large drawdown
- To a limited extent, the probability of a drawdown is predictable, since it increases as investors withdraw money, forcing a manager to liquidate at bad prices
Goal – obtain a liquidity haircut

**Step 1:**
- We analyze the incentive clause to the HF manager (by extending a paper by Goetzmann, Ingersoll & Ross, 2001)
- Our approach realistically models how a manager can optimally vary leverage

**Step 2:**
- The investor holds a portfolio of a liquid fund and a HF, with similar risk and reward characteristics
- The investor tries to maximize his risk adjusted return

**Cat and mouse game**
- If the investor had unrestricted liquidity in the HF, he could rebalance
- Since he does not, he has to account for this by decreasing return or increasing volatility
- The appropriate haircut can be calculated using Longstaff’s method (1999)
Performance fee

- At time $T$, the HF manager collects a performance fee of $p \max (S(T) - H(t), 0)$
- Here, $p$ is the performance fee (e.g. 20%)
- $H(t)$ is the most recent high water mark
- $S(T)$ is the asset value of the fund at $T$
A manager can increase leverage (by borrowing and investing more money in the strategy), up to a threshold (usually specified in the offering document).

Higher leverage $\rightarrow$ Higher expected return and higher volatility

Since the manager is long a call option type structure, there is an incentive to increase leverage near the high water mark (where “gamma” is largest).
HF fee

- HF collects two fees
  - Management fee (fixed %-age of assets)
  - Performance fees
- A typical HF may collect 1.5% of the assets + 20% of performance over the high water mark
- The HF manager has a position similar to a risky convertible bond, in the following sense
  - Receives an annual coupon + upside participation if above the conversion level
  - Similar to a convertible bond, if the asset level drops too much, investors may withdraw and the manager no longer receives a coupon (default case)
Manager P&L Profile

- Survival zone, leverage is low
- High vega zone, leverage is high
- Manager collects 1.5% of assets + 20% of profits over high water mark

- Fund has defaulted, manager loses future coupon payments on $100 million for 3 years
- Coasting zone, leverage is moderate

Super Computer Consulting, Inc.
HF manager’s strategy

- If $S(t) \sim H(t)$
  - The manager increases leverage

- If $S(t) >> H(t)$
  - The manager will reduce leverage and “coast”, to lock in a profit for the year

- If $S(t) << H(t)$
  - Reduce leverage as the fund is close to liquidation. Further withdrawals may force the manager to close the fund and lose management fees for several years (e.g. three years)
  - Smaller managers may increase leverage in this case
Investor’s Strategy

- Longstaff calculates an illiquidity premium using a portfolio with two assets
  - Money market account
  - A stock

- In the benchmark case – the investor can shift money and rebalance as needed

- In the illiquid case, the investor is locked in and is forced to choose static allocation weights

- The illiquid case will always have a lower expected utility

- The difference in utility numbers is the “liquidity premium”
HF Complication

- HF’s expected return and volatility are a function of the level of assets as compared to the high water mark.
- If the expected return and volatility of the HF never changed, the investor will increase allocation after a draw down (re-balance).
- HF investors DO NOT behave like that.
- They withdraw after a drawdown.
  - The HF is considered more dangerous.
  - The investor is worried that others may withdraw, triggering a sell-off in illiquid securities and further drawdown – better to withdraw early.
  - Organizational risk: key employees may leave if performance is poor (since bonuses will be low).
Numerical simulation rules

- If $S(t) >> H(t)$
  - Leverage is moderate
  - Vega is small and positive
- If $S(t) ~ H(t)$
  - Leverage is high
  - Vega is large and positive
- If $S(t) << H(t)$
  - Leverage is small
  - Vega is negative (with large absolute value)
- If $S(t)$ is below default level, the HF is liquidated and the investor receives a %-age of his holdings

Thus, drift and volatility are level dependent
For simplicity, we assume leverage is a step function of $S(t) - H(t)$
Numerical example

The investor’s utility is a simple information ratio, \( \frac{\text{Return}}{\text{Volatility}} \).

The investor can select a portfolio consisting of:

- A hedge fund
- A mutual fund

Return = 10\%, Volatility = 10\%, Correlation = 0

Two year window, monthly rebalancing, 40000 simulations
Manager’s leverage

- HF manager modifies his leverage once a month
  - If assets drop below 85, there is a liquidation and the investor receives 50% - or 42.50
  - If assets rise above 110, the manager uses moderate leverage: return = 10%, volatility = 10%
  - If assets fall below 88.75 (75% of the distance to default), the manager reduces leverage: return = 5%, volatility = 5%
  - If assets are between 88.75 and 110, the manager increases leverage: return = 20%, volatility = 20%
Benchmark Simulation (monthly rebalancing)
Simulation

- The HF manager’s assets are 100
- The investor chooses 67% in the mutual fund and 33% in the HF
- If, over time the assets drop below 88.75, the return is 5%. The expected volatility is larger than 5% since there is a positive probability of default
- We incorporate the default probability into our simulation by calculating the volatility of the mixture of a normal distribution and a Dirac distribution at the recovery level
- The expected utility is approximately 1.5
No rebalancing

Empirical Distribution, No Rebalancing (w = .55)
No rebalancing

- We first calculate the optimal static allocation
- Find the optimal allocation to be 55% mutual fund and 45% hedge fund
- We create a histogram of simulated information ratios, which turns out to be bimodal
- The information ratio is about 1.3
- …or 10% smaller than in the rebalancing case
Conclusion

- We should increase the volatility of the HF by 10% to account for the liquidity haircut.
- Thus, if a hedge fund has a historical volatility of 10% and a 1 year lockup, we should raise the volatility to 11% before we decide upon an allocation.
Remarks

- It is dangerous to characterize HF by historical return, volatility and correlation numbers.
- Many fund-of-fund managers are already used to mean variance models for traditional assets and are reluctant to change technologies.
- Our work enables them to...